The History of Mars Exploration (NASA)

To follow up the successful launch of MSL, which NASA confirmed last night was inserted into an almost perfect trajectory towards Mars, today we take a look at the history of successful Mars Exploration missions by NASA.

The History of Mars Exploration

Year Name Type Summary
1964 Mariner 4 Flyby First spacecraft to flyby of Mars and return close-up pictures of the surface.  Returned 21 images during the flyby.
1969 Mariner 6 Flyby Returned 75 images during flyby and provided data used to program Mariner 7 for it’s flyby five days later.
1969 Mariner 7 Flyby Returned 126 images during it’s flyby.
1971 Mariner 9 Orbiter First spacecraft to orbit another planet, returned 7,329 images while operational.  Still in orbit today and will remain so until about 2022.
1975 Viking 1 Orbiter/Lander First spacecraft to land on Mars, was operational for 2245 sols, contact was lost when a faulty command sequence sent from the ground overwrote the antenna pointing software. The Viking 1 Lander was named the Thomas Mutch Memorial Station in January 1982 in honor of the leader of the Viking imaging team.
1975 Viking 2 Orbiter/Lander Twin of Viking 1 and second spacecraft to land on Mars.  Viking two was operation for 1281 sols, during which time it returned over 16,000 images and a large amount of scientific data.
1996 Mars Global Surveyor Orbiter Arrived at Mars 9/12/1997, began mapping operations in 1996, lose of contact 11/2/2006
1996 Mars Pathfinder Lander/Rover Lander on Mars 7/4/1997, deployed rover Sojourner to explore the surface around the lander.  The lander sent more than 16,500 pictures and made 8.5 million measurements of the atmospheric pressure, temperature and wind speed. Lander renamed Carl Sagan Memorial Station.
2001 Mars Odyssey Orbiter Arrived at Mars 10/24/2001, began orbital operations 2/19/2002.  Still operational today.  As well as providing a large amount of images and scientific data the craft is used as a relay for MER and Phoenix.
2003 Mars Exploration Rover – Spirit Rover See MER Post
2003 Mars Exploration Rover – Opportunity Rover See MER Post
2005 Mars Reconnaissance Orbiter Orbiter Arrived at Mars 3/10/2006, began orbital operations in 11/2006.  Still operational today with a variety of scientific instruments.  Also provides relay capabilities to MER.  MRO’s telecommunications systems will transfer more data back to earth than all previous spacecraft sent to the planet combined, more than 26 terabits.
2007 Phoenix Mars Lander Lander PML arrived on Mars 5/28/2008 and was operational for 155 sols, the original mission was designed for 90 sols.  The instruments were designed to look for microbial life and water.  Returned more than 25 gigabits of scientific data for analysis.

Mars Science Laboratory – Curiosity

This morning the massive Mars Science Laboratory (MSL) launched torwards Mars.  Scheduled to land in August 2012 the rover will bring a host of scientific instruments to the planet and continue the exploration that started in 1975 with the Viking landers.

Mars Science Laboratory (MSL)

By far the largest rover every launched to another planet the MSL is a risky mission.  The rover is five times bigger and carriers more than ten times the mass of scientific instruments than the MER rovers.  In additional MSL will attempt the first precision landing on Mars, which will be achieved by a sky crane that will lower the rover to the surface before flying off and crashing into the surface.

Unlike it’s predecessors, which were solar powered, MSL will use an radioisotope thermoelectric generators (RTGs).  This will allow the rover to operate day and night and also has the advantage that the heat generated by the process can be used to keep the components warm meaning more electricity will be available to the instruments.

Once on the surface the rover will wake up and begin it’s mission, designed to operate for at least a martian year (668 Martian sols/686 Earth days) MSL will using it’s various scientific instruments to determine the habitability of Mars for microbial life.

MSL is carrying an impressive array of instruments which will enable it to take samples of Martian rocks and analyze them.  Rather than repeat the information I have included a link to the Mars Science Laboratory site.

The plan is to land MSL at Gale Crater which spans 96 miles (154 kilometers) in diameter and holds a mountain rising higher from the crater floor than Mount Rainier rises above Seattle. Gale is about the combined area of Connecticut and Rhode Island. Layering in the mound suggests it is the surviving remnant of an extensive sequence of deposits. The crater is named for Australian astronomer Walter F. Gale.[1]

Now all we have to do is wait until next August when Curiosity lands.

Sources
1 – http://www.jpl.nasa.gov/news/news.cfm?release=2011-222#1

Mars Exploration Rovers

Tomorrow NASA will be launching the Mars Science Laboratory (MSL) to begin an eight month journey to the red planet.  Today we take a look at it’s predecessors the highly successful Mars Exploration Rovers.

Mars Exploration Rovers (MER)

Launched in 2003 the twin rovers Spirit and Opportunity were sent to explore the surface and geology of Mars.  The two rovers were launching within a month of each other and used an airbag landing to arrive on the surface of Mars eight months later in early 2004.

Each rover was designed to operate for 90 sols (Sol is a day on Mars, which is almost 40m longer than a day on earth).  The rovers far exceeded there designed life with Spirit finally giving up after ~2208 sols.  Opportunity is still operational today over 2777 sols after arriving on the planet.

The rovers have provided a wealth of information from the surface of Mars and have demonstrated that we can operate in distant environments for extended periods of time.

While the rovers have been active for a long time they certainly have had some luck along the way and have to rest during the winter months due to not having enough solar energy to charge the battery.

Several times during the mission NASA noticed that the power levels on the rovers suddenly increased having declined due to the buildup of dust on the solar panels.  They determine later that these were because of wind gusts called dust devil’s that had hit the rover cleaning off the dust, this was confirmed in 2010 when Opportunity spotted a wind gust (dust devil).

Since arriving on the planet each of the rovers has sent back a large amount of pictures,  including panoramic views of the environment around the rover.  These images are available on NASA’s Mars Rover web site.

We don’t know how much longer Opportunity will operate for, soon it will enter it’s next winter hibernation period.  However as long as it has power, is communicating and NASA has funding we can expect more from the amazing rover.

Opportunity's View Approaching Rim of Endeavour Crater

Happy Thanksgiving

Today we take a break from Commercial Space to remember Thanksgiving.

I think we all have things to be thankful for, personally I am very thankful for my family, friends, Church and jobs.  It has been amazing to see just how much has happened in the last year.

This time last year I was still driving the Nissan which was almost at 200,000 miles and struggling after almost 10 years of service we finally had to stop using her and were blessed to get a car for cheap.  The new car didn’t last as long as we hoped but was long enough that we could get a newer car.

Work has been busy this year, especially since September when I started part-time teaching Computer Technology at Cornerstone Christian Academy.  The schedule has been hectic but so far it has worked out well.  Just this month I celebrate 8 years at Kewill and continue to enjoy working in the Engineering Department.

Church has changed too, unfortunately we lost a couple more families this year but God has really been blessing the work.  We have seen several people get saved and baptisted this year, including our youngest daughter Lilly.  We have had the pleasure of adding new members to the church family and seen growth in all areas.  The new Faith Weaver Sunday School program which started in September has been great and Pastor Doug continues to inspire us with his messages ( available on iTunes or the Web Site – www.sheldonvillebaptist.org ).  I am told that the Sound Guy is hot too ( but that was my wife so she may be biased 🙂 !!!! )

While we celebrate Thanksgiving lets also remember those who will not be home with there families this year.  Whether it be our men and women in the armed forces serving around the world, the men and women of our emergency services who are working, or the astronauts on the International Space Station.

And let us also remember who have passed away this year and the families they have left behind.

Finally let us also be thankful to God for everything he has provided and continues to provide.

NASA Budget

This week the new Budget was signed into law and NASA’s funding for the Commercial Crew development has been slashed.  So what does this mean for the future?

As we are currently looking at Commercial Space and the different teams who are involved it seems appropriate to review this further and see what real impact this has.

The final budget for Commercial Crew has come out at $406 million which is less then half the original $850 million requested.  The Senate and House appropriations committees passed legislation calling for commercial crew funding levels of $500 million and $312 million, respectively.  A conference committee between lawmakers agreed to a compromise budget at $406 million.

This has serious implications for the Commercial Crew Development program, NASA currently has four companies working towards milestones each which has specific financial rewards associated with them.  While the money for the current set of milestones is already secure the reduce budget does have implications for future milestones.  Either NASA will have to reduce the number of companies they are working with or slow down the pace of development.  Neither of these options is ideal as it results in the US and NASA not having a crew capability for longer.

Given that NASA are currently paying $63 million per flight to the space station and have at least 4 crew per year launching by 2015 NASA would have spent between $1 billion and $2 billion getting crew there.  NASA Administrator Charlie Bolden cautioned legislators that reducing the funding would likely add another 2 years to the program meaning that at the current rate another $500 million to $1 billion will be spent on Soyuz flights.

Several of the companies that are currently working towards Commercial Crew have stated that they can launch for less than the $63 million so this new budget makes no sense for the future of US access to space or the goal of reducing costs.

Personally I hope that none of the companies will stop the work they have begun on Commercial Crew and will step up and show the government that they can reduce the cost of access to space and once again give the US the access to space that it has given up at the present time.

 

 

Commercial Space – Part Six

Today we continue our look at Commercial Space with Boeing and there contribution to the CCDev/CCDev2 programs.

Boeing

Working with Bigelow the CST-100 will provide crew and cargo missions to the International Space Station.   The CST-100 was first announced by Robert Bigelow in June 2010, just last month NASA announced that Boeing had signed an agreement to use one of the Shuttle OPF buildings as there construction site for the CST modules.

Drawing on their expertise with the Apollo, Space Shuttle and ISS they have quickly demonstrated that they can deliver on the design and with the recent funding from NASA have several milestones that have to be achieved as they work towards being operational by 2015.  Clearly the partnership with Bigelow will benefit both companies;  as Boeing will have a second destination for CST and Bigelow will have a supplier for their stations.

Boeing have recently been conducting drop tests  of their test module to evaluate the design of the airbag cushioning system that will be deployed just before landing.  So far Boeing are the only company to use this design and will be interested to see how different the landing will be to some of the other modules.  I think overall SpaceX’s design seems to offer the best solution for landing but only time will tell as they continue to test and actual use the systems.

Boeing has designed CST to be compatible with Atlas V, Delta IV and Falcon 9 with Atlas V being the initial launch vehicle during testing.

At present there is no set date for when orbital testing will be performed.

Commercial Space – Part Five

Today we look at Blue Origin and there contribution to the CCDev/CCDev2 programs.

Blue Origin

Blue Origin are working on the New Shepherd sub-orbital craft to provide customer’s trip to the edge of space, allow a period of time of weightlessness before returning to the launch site.  Unlike Virgin Galactic’s SpaceShipTwo this will be a capsule based craft and will return using parachutes.

In the future they are will be launching the Biconic Space Vehicle for orbital operations.  This craft will use some of the components from New Shepherd as well as a re-usable first stage booster. From what I can determine neither of these have actually been built and I was not able to determine when they would be.  SpaceX recently announced that they are working on re-usable booster components to reduce costs but as yet have no date when they would even begin testing.

While Blue Origin are making progress they seem to be a long way behind some of the other players in the CCDev/CCDev2 arena and while coming later to the industry shouldn’t hurt them too much as we need more competition they will have a lot more to prove at that point to catch up.

Commercial Space – Part Four

Now we move onto the NASA Commercial Crew Development (CCDev/CCDev2) providers.

Sierra Nevada Corporation (SNC)

SNC are currently working on the Dream Chaser spacecraft, designed to lift off on top a man-rated launcher with Delta-V as the current preferred booster.  The craft is designed to transport up to seven astronauts as well as cargo.  Exact weight’s are not currently available.

Artist's illustration of the Dream Chaser crew transportation vehicle docked to the ISS. Source: Sierra Nevada Space Systems 2010

The ship will dock with the space station and then glide back to a landing once the mission is complete. Due to it’s design it should be able to land at any commercial airstrip and unlike the Space Shuttle it’s reaction control system uses ethanol and therefore can be handled immediately after landing.

Dream Chaser has several other advantages over the shuttle, first it is designed to last as long as 210 days in space, where as the shuttle only allowed a couple of weeks.  Second the heat shield is made up of ablative tiles ( created by NASA ) which can be replaced in large groups and don’t need to be replaced as often.

As with the COTS program CCDev and CCDev2 are milestone driven programs, SNC have recently announced that they have achieved several of the early milestones and are working towards drop tests using Virgin Galactic’s WhiteKnightTwo aircraft in 2012.

With the creation of the CCDev/CCDev2 programs the future for spaceflight is very exciting and will only result in cheaper missions for everyone.

Commercial Space – Part Three

As we continue our look at the Commercial Space Industry we turn out focus on Bigelow Aerospace.

Bigelow Aerospace

Unlike SpaceX and Orbital, Bigelow is focusing on creating Orbital Space Stations using inflatable technologies to drastically increase the usable space available once on orbit.

So far they have launched the Genesis 1 and 2 modules and from a recently email conversation with Bigelow have determined that both are still operating in orbit today.

They are currently working on the BA330 Station, each will have roughly 330 cubic meters of internal space and multiple modules can be linked together to provide larger complexes.

As Bigelow are concentrating on the development of Space Stations not launch vehicles they do not currently have a way of getting crew to the stations.  They have recently been linked with Boeing who are working on the CST100 crew vehicle ( we will discuss this soon ).